

UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA

Enhancing PFI Prediction with GDS-MIL: a Graph-based Dual Stream MIL Approach

Gianpaolo Bontempo^{1,2}, Nicola Bartolini¹, Marta Lovino¹, Federico Bolelli¹, Anni Virtanen³, and Elisa Ficarra¹

> ¹University of Modena and Reggio Emilia, Italy *[name.surname*]@unimore.it

²University of Pisa, Italy ³University of Helsinki, Finland

1/16 Resolution

Graph Context

GNNs are a class of deep learning models designed specifically for processing data structured as graphs, where nodes

Whole-Slide Images (WSIs) present challenges for deep learning frameworks due to their large size and lack of pixellevel annotations.

Multi-Instance Learning (MIL) approaches consider the image slide as a bag composed of many patches, called instances; afterward, they weight the instances through attention mechanisms and aggregate them into a single representation to provide a classification score for the entire bag.

represent entities, and edges represent relationships between them.

Message Passing: GNNs perform message passing or information aggregation across neighboring nodes in multiple iterations (typically called layers or message-passing steps). In each iteration, nodes aggregate information from their neighbors and update their own representations.

Results									
		Best Epoch		Last Epoch					
Scale	Approach	Accuracy	AUC	Accuracy	AUC				
Х Х	MaxPooling	0.579 ± 0.067	0.432 ± 0.165	0.579 ± 0.055	0.419 ± 0.161				
	MeanPooling	0.596 ± 0.072	0.427 ± 0.166	0.594 ± 0.069	0.413 ± 0.148				
	AB-MIL [1]	0.606 ± 0.076	0.467 ± 0.171	0.577 ± 0.076	0.413 ± 0.166				
	DS-MIL [2]	0.582 ± 0.090	0.478 ± 0.145	0.574 ± 0.075	0.458 ± 0.136				
	GDS-MIL (our)	0.620 ± 0.045	0.512 ± 0.096	0.566 ± 0.045	0.402 ± 0.139				
$20 \times$	MaxPooling	0.676 ± 0.055	0.637 ± 0.083	0.661 ± 0.072	0.598 ± 0.107				
	MeanPooling	0.610 ± 0.089	0.446 ± 0.196	0.605 ± 0.086	0.443 ± 0.193				
	AB-MIL [1]	0.594 ± 0.095	0.510 ± 0.141	0.576 ± 0.090	0.438 ± 0.156				
	DS-MIL [2]	0.681 ± 0.033	0.650 ± 0.049	0.656 ± 0.028	0.572 ± 0.065				
	GDS-MIL (our)	0.704 ± 0.070	0.661 ± 0.099	0.663 ± 0.064	0.611 ± 0.092				

Problem Statement

The prediction of **Platinum-Free Interval (PFI)**, defined as the time interval between the end of chemotherapy and disease recurrence, is a determinant for treatment planning and is performed by analyzing WSIs.

While some tasks can rely on morphology (e.g., tumor detection), others would benefit from a **more contextualized tissue analysis**. An example is the aforementioned prediction of PFI on chemotherapy-treated HGSOC tissue.

Architecture							
Background Removal	Feature	GAT	Dual-Stream				
& Patch Extraction	Extraction	Embedding	MIL Aggregator				
WSI							

# Layer	# Heads	AUC	Acc.
1	1	0.664	0.704
1	2	0.667	0.732
1	3	0.726	0.764
2	1	0.634	0.722
2	2	0.607	0.648
2	3	0.619	0.694
3	1	0.641	0.694
3	2	0.639	0.704
3	3	0.697	0.732

Increasing the **number of layers**, an over-smoothing effect could occur.

If the smoothing is too strong, it becomes challenging for the MIL module to distinguish what is actually important.

Using a **multi-head** approach enhances the ability to capture the most important information from the neighborhood and build a more contextualized representation of each instance.

References

The embeddings are fed to a GAT module to capture context and generate a more contextualized representation. Li, B., Li, Y., & Eliceiri, K. W. (2021). Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-Supervised Contrastive Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 14318-14328).
Ilse, M., Tomczak, J., & Welling, M. (2018). Attention-based Deep Multiple Instane Learning. In International Conference on Machine Learning (pp. 2127-2136). PMLR.

22 th International Conference on Image Analysis and Processing

