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Abstract

Many recent works in dentistry and maxillofacial im-
agery focused on the Inferior Alveolar Nerve (IAN) canal
detection. Unfortunately, the small extent of available 3D
maxillofacial datasets has strongly limited the performance
of deep learning-based techniques. On the other hand, a
huge amount of sparsely annotated data is produced every
day from the regular procedures in the maxillofacial prac-
tice. Despite the amount of sparsely labeled images being
significant, the adoption of those data still raises an open
problem. Indeed, the deep learning approach frames the
presence of dense annotations as a crucial factor. Recent
efforts in literature have hence focused on developing label
propagation techniques to expand sparse annotations into
dense labels. However, the proposed methods proved only
marginally effective for the purpose of segmenting the alve-
olar nerve in CBCT scans. This paper exploits and pub-
licly releases a new 3D densely annotated dataset, through
which we are able to train a deep label propagation model
which obtains better results than those available in litera-
ture. By combining a segmentation model trained on the
3D annotated data and label propagation, we significantly
improve the state of the art in the Inferior Alveolar Nerve
segmentation.

1. Introduction

Dental implant placement within the jawbone is a rou-
tinely executed surgical procedure, which can become com-
plex due to the local presence of the Inferior Alveolar Nerve
(IAN). In particular, the nerve is oftentimes in close relation
to the roots of molars, and its position must thus be carefully
detailed before the surgical removal. As avoiding contact
with the IAN is a primary concern during these operations,
segmentation plays a key role in surgical preparations.

Given the exceptionally large amount of time required
for 3D manual segmentation, perfect anatomical annotation
accuracy is usually overlooked in favour of a fast execution

time. Therefore, the de facto standard in radiology medi-
cal centers for dentistry and maxillofacial purposes is based
on sparse annotations, which can be obtained from 2D im-
ages in a relatively small amount of time. Nevertheless, 2D
annotations fail to identify a considerable amount of inner
information about the IAN position and the bone structure.
The incomplete detection of the nerve positioning is often
sufficient to facilitate a positive outcome of surgical inter-
vention, but it is not an accurate anatomical representation.

Convolutional Neural Networks (CNNs) have provided
amazing results for both 2D and 3D segmentation, along-
side several more computer vision tasks [2, 5, 9, 11, 13, 26].
As a matter of fact, a segmentation CNN would be able
to correctly portray the 3D structures of an IAN with-
out any need for manual adjustment. Unfortunately, the
great capabilities of CNNs in this field are limited by the
lack of carefully annotated data, which is indispensable for
training deep learning models. Indeed, despite the signifi-
cant amount of raw data available, the supervised learning
paradigm requires dense 3D annotations to reach its full po-
tential, which are extremely expensive to acquire.

In this work, we propose a novel label propagation
method, based on deep learning, that can translate sparse 2D
labels into 3D voxel-level annotations. This method can fill
the gap between the most modern and sophisticated meth-
ods for 3D segmentation and the lack of viable annotated
data in the maxillofacial field. Moreover, with the goal of
pushing the state of the art in 3D IAN segmentation, we de-
sign a novel 3D segmentation CNN that exploits positional
information to generate the final 3D prediction.

In order to correctly evaluate both of the proposed meth-
ods and any future competitor, a new dataset has been col-
lected, annotated by medical experts at voxel-level (Fig. 1e),
and publicly released along with this paper1. We address
this as 3D annotation in contrast to the traditional one,
which is performed on a 2D “panoramic view” obtained
from the volume (Fig. 1d).
The main contributions introduced by this paper can be

1https://ditto.ing.unimore.it/maxillo/
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Figure 1. Samples from the proposed dataset. Each line of the image contain a different patient, from left to right you can see (a) left-side,
(b) frontal and (c) right-side views of the CBCT volume. (d) and (e) depicts sparse and dense annotations of the inferior alveolar nerve
respectively. Best viewed in color.

summarized as follows:

• We design a novel deep label propagation technique to
enhance sparse 2D annotations and yield dense voxel-
level annotations;
• A novel deep learning architecture for 3D segmenta-

tion is proposed, which improves the state-of-the-art
segmentation accuracy for the mandibular canal;
• We collect and publicly release the first CBCT (Cone

Beam Computed Tomography) 3D dataset with profes-
sionally produced 3D annotations;
• The source code which allows to exactly reproduce all

the reported experiments is publicly released.

The rest of the paper is organized as follows. Sec. 2 presents
state-of-the-art approaches for both the automatic detection
of the inferior alveolar nerve and label propagation. Sec. 3
and Sec. 4 describe respectively the collected dataset and
the proposed methods, both for label propagation and 3D
IAN segmentation. Finally, experiments are detailed in
Sec. 5, and conclusions are drawn in Sec. 6.

2. Related Works
2.1. IAN Segmentation

Since the early 2000s, the worldwide spread of Cone
Beam Computed Tomography (CBCT) [28] has brought the
scientific community to devote many efforts to the devel-
opment of automatic systems for the segmentation of the
IAN in CBCT scans, using classical computer vision meth-
ods at first [1, 16, 17, 23, 32], and machine learning and
deep learning more recently [6, 14, 15, 18]. Classical com-
puter vision methods are mostly based on Statistical Shape
Model (SSM), and enhanced by means of either tracing or
fast marching algorithms [1, 16]. These methods, however,
are limited by the need for segmented mandible bone in the

training annotation, which requires additional manual work.
As an alternative, predefined thresholds can be used to sep-
arate tissue from the canal [23], but this often results in an
incomplete depiction because of the low contrast character-
izing CBCT scans.

In 2020, Jaskari et al. [15] designed one of the first deep
learning applications to the segmentation of the mandibu-
lar canal, by training a fully convolutional network on a
dataset of coarsely annotated 3D scans. Their annotations
are obtained by manually selecting an average of 10 control
points for each canal, interpolating them into a spline, and
applying a static 3 mm diameter to the outline. Their ap-
proach achieves better results than previous attempts based
on SSM, but the ground truth masks automatically gener-
ated from coarse annotations hamper the performance of the
method. In the same year, Kwak et al. [18] trained 2D and
3D models based on SegNet [2] and U-Net [5, 27] using
a private annotated dataset. However, neither the dataset
nor the code is publicly available, making it impossible to
compare their approach to ours. Our work focuses on the
3D inferior alveolar canal segmentation, proposing a new
architecture, a public dataset, and a novel deep label prop-
agation technique. The full dataset with annotations and
subdivision in training and testing splits are available in [7],
together with the code to reproduce the experiments pro-
posed in this paper.

2.2. Label Propagation

Because of the heavy burden represented by manual an-
notation of segmentation ground truth, researchers have re-
cently focused on the development of models that exploit
sparse annotations instead, in different styles, such as scrib-
bles, bounding boxes, or points [3, 8, 12, 20, 21]. In particu-
lar, the use of scribble annotations in the field of image seg-
mentation has been recently investigated in [19, 30, 31, 33],
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Figure 2. (a) axial slice. The panoramic base curve (red line)
identifies the mandible and is used to generate the panoramic view
(b) to produce the final 2D annotation. Best viewed in color.

where different methods are proposed to propagate sparse
labels and thus produce dense ground truths.

Fewer proposals are related to the medical imaging field.
In [25], a method to recover semantic segmentations given a
database of brain and lung scans with corresponding bound-
ing boxes is proposed, which makes use of an iterative
energy minimization problem defined over a densely con-
nected Conditional Random Field (CRF) to update the pa-
rameters of a CNN model. Unfortunately, the approach is
limited to 2D, and bounding boxes do not suit well the con-
cave and diagonal extension of the IAN.

The 3D version of U-Net [5] was originally introduced
with the aim of learning to perform 3D dense segmentation
from sparse annotations. The network is trained using a
few annotated slices as ground truth, and leaving most vox-
els unlabeled. The method is still constrained by the need
for thoroughly annotated slices, which require considerably
more manual work than simply drawing a pair of lines.

Regarding the specific topic of this paper, the segmen-
tation of the IAN, the only label propagation proposal up
to now is represented by the already mentioned work by
Jaskari et al. [15], where sparse annotations in the form of
lines are propagated to produce a tubular shape that mimics
the body of the mandibular canal which contains the nerve.

3. Dataset

State-of-the-art algorithms for inferior alveolar nerve
canal segmentation are based on annotations obtained from
2D views. In fact, the huge amount of time required to re-
alize 3D annotations makes their cost prohibitive for most
medical centers. Furthermore, the datasets used to produce
the current state-of-the-art results are private and not acces-
sible to the scientific community. This prevents researchers
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Figure 3. Example of Cross-Sectional Views (CSVs) with annota-
tions of the mandibular canal. Best viewed in color.

from replicating experiments and validating their novelties.
Such kind of 2D annotations identify the upper part of

the mandibular canal along the entire dental arch. The anno-
tation process, usually performed by radiology technicians,
is divided into three different steps. An axial plane of the
original CBCT scan (Fig. 2a) is selected and a spline —the
panoramic base curve— is manually drawn to fit the central
part of the mandible. This spline identifies the panoramic
view, i.e., a 2D image constituted by the voxels of the
curved plane orthogonal to the axial slice and crossing the
panoramic base curve. This view highlights the inferior
alveolar nerve and is employed by radiologists to produce
the sparse annotation of the IAN (Fig. 2b). The resulting an-
notation can be mapped back to the original 3D volume; ex-
amples are reported in Fig. 1d. In the rest of the discussion
we will refer to 2D annotations as sparse, in contrast with
3D dense annotation described below. Sparse 2D annota-
tions are employed in everyday surgical practice to measure
the height and depth of artificial implants and avoid inferior
alveolar nerve injuries.

To cope with the lack in literature reported at the begin-
ning of this Section, this paper gathers and publicly releases
a new dataset of 3D CBCT scans with dense 3D annotations
of the inferior alveolar nerve. The dataset counts 347 dental
scans obtained by means of CBCT (NewTom/NTVGiMK4,
3 mA, 110 kV, 0.3 mm cubic voxels). Volumes have been
acquired with the 0.3 mm intra-slice distance with a shape
in the range from (148, 265, 312) to (178, 423, 463) for the
Z, Y and X axes. Voxel values, expressed in Hounsfield
unit (HU), are in the interval [−1 000, 5 264]. Sparse anno-
tations are available for all of the 347 volumes composing
the proposed dataset, and 91 volumes have been elaborated
by a team of doctors with years of experience in maxillo-
facial surgery to produce dense voxel-level annotations of
the canal. The rest of the paper will refer to the set 91
volumes with both dense e sparse annotation as primary
dataset, whereas we will identify the 256 sparsely annotated
volumes as secondary dataset.

The annotation procedure employed by expert doctors to
produce the final labels is summarized below and has been
carried out by means of the tool described in [22]. First of
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Figure 4. Dense annotations pre-processing. The annotations pro-
duced as described in Sec. 3 are dense and jagged (a). For this
reason we compute a concave α-shape (b). (c) is the resulting bi-
nary raster volume after voxelization.

(a) Point Set (b) Triangulation (c) α-complex (d) α-shape

Figure 5. α-shape construction process for the point set of (a).
In the Delaunay triangulation (b), triangles with circumradius ≤
− 1

α
form a simplicial subcomplex known asα-complex (c), whose

border is the α-shape (d).

all, the arch approximation that better describes the canal
course is automatically identified through morphological
operations and possibly manually adjusted (Fig. 2a). The
one-voxel thick curve produced as output is then approxi-
mated with a polynomial and converted into a Catmull-Rom
spline. Each point of the spline generates a Cross-Sectional
Line (CSL) lying on the axial plane and perpendicular to the
spline itself. Starting from the CSL, a Multi Planar Refor-
mation (MPR) is performed in order to generate a Cross-
Sectional View (CSVs). The process consists in interpo-
lating the value of the base lines (CSL) across the entire
volume height. The CSVs can be optionally rotated to be
orthogonal to the canal slope, thus ensuring the canal to be
circular in each view and simplifying the following anno-
tation process which is preformed drawing closed Catmull-
Rom splines on these views (Fig. 3). The ground truth vol-
umes constituting the dataset are generated refining the set
of points filling the closed splines by means of the α-shape
algorithm detailed in the following.

3.1. Alpha-Shape Annotation Refinement

The annotation tool used for producing dense segmenta-
tion ground truths usually outputs a jagged point set, similar
to the example of Fig. 4a. In order to obtain a smooth polyg-
onal mesh out of it, we compute a concave α-shape.

The α-shape [10] is a generalization of the convex hull,
aimed at representing the intuitive concept of shape of a
point set. The only parameter of the algorithms is α ∈ R,
that regulates the “crudeness” of the result. Eq. (1) defines
a generalized disk of radius 1

α , Dα:

Dα


The complement of a disc of radius− 1

α
, if α < 0

A halfplane, if α = 0

A disc of radius 1
α
, if α > 0

(1)

Given a point set S and a value for α, the α-shape is con-
structed in this way: an edge is put between two points pi
and pj whenever there exists a Dα with pi and pj lying on
its boundary, and which contains the entire S. When α = 0,
this procedure constructs the convex hull; instead, cruder or
finer shapes can be respectively obtained using positive or
negative α values. Because of the geometrical nature of the
alveolar nerve, we are specifically interested in concave α-
shapes, achievable when α < 0.

The most common method for computing a concave α-
shape consists of taking the border of a simplicial subcom-
plex extracted from the Delaunay triangulation, containing
only triangles with circumradius ≤ − 1

α . An example of the
process is depicted in Fig. 5.

The above concepts can be extended to the three-
dimensional case by substituting disks and triangles with
spheres and tetrahedra. Fig. 4b illustrates an example of α-
shape polygonal mesh built starting from dense annotations
of the alveolar nerve. Finally, the mesh is converted into
a binary raster volume by means of voxelization: the final
result is given in Fig. 4c.

4. Method

This Section describes the label propagation approaches
for the secondary sparsely annotated dataset and the mod-
els for the main task, namely the deep segmentation of the
mandibular canal from CBCT images. We firstly report our
competitor methodologies and then detail our proposals.

4.1. Reference Approach

The work by Jaskari et al. [15] introduced the follow-
ing fully automatic method to obtain synthetic dense labels
from sparse annotations. For each annotation point, the di-
rection of the canal is determined using the coordinates of
the next point. Then, a circle with a diameter of 3 mil-
limeters is drawn on the plane orthogonal to the canal di-
rection. Finally, all the circles are connected in a hollow
pipe-shaped 3D structure, that is voxelized and filled with
traditional computer vision algorithms.

This method is employed by the authors to construct
their training set. In the following, this kind of synthetic la-
bels will be referred to as Circle Expansion, in opposition to
the new densely annotated dataset and our novel Deep Ex-
pansion technique, both introduced with the present work.
The training set is prepared offline. Input values, stored
in Hounsfield unit (HU), are cropped to avoid peak values
caused by metal artifacts in the patient mouth or acquisi-
tion noise. A grid sampling [24] is run to extract 323-sized
patches, and patches without any mandibular canal voxel
are discarded to reduce class imbalance. The segmenta-
tion method proposed by Jaskari et al. makes use of a cus-
tom version of 3D U-Net, with short residual connections
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Figure 6. (a) is the ground truth. Competitor model prediction before (b) and after (c) noise filtering. Finally, the last two figures depict
the prediction after training our architecture on the primary dataset (d) and when the pre-training on the dataset generate through the
label-propagation network is included (e).

(a) Circle Expansion

(b) Deep Expansion

(c) Manual 3D Annotation

Figure 7. Cross-sectional views at different z-depth. Circle Ex-
pansion (a), our novel Deep Expansion network (b), and hand-
drawn dense annotations (c) are compared. While the limits of the
circle expansion approach are blatant, the prediction of our deep
learning model (b) is very close to the 3D manual annotation (c).

between blocks with the same feature channels, a differ-
ent depth —maximum number of channels is 256 instead
of 512— and convolutions with a stride of two in order to
avoid max pooling layers. The 3D network outputs are re-
fined by a post-processing which only keeps the two largest
connected components [4], with the aim of removing false
positive voxels Fig. 6c.

Since no public source code of the method is available,
our implementation is provided, in order to allow the reader
to completely reproduce the results reported in Sec. 5.

4.2. Proposed Method

We employ a modified version of 3D U-Net as a back-
bone for both the label propagation and the IAN segmenta-
tion CNNs. All of the volumes employed in this work have
0.3 voxel spacing, i.e. the same resolution despite the dif-
ferent overall dimensions. Therefore, we extract the cen-
ter of every volume without ever discarding parts of the
annotated canal and obtaining sub-volumes with a size of
168× 280× 360 voxels. During training, sub-volumes are
further divided in a grid of 80× 80× 80 blocks.

Differently from the original 3D U-Net architecture, ev-
ery three-dimensional convolution in our CNN applies a 2
pixels padding along each dimension. Although this alter-
ation does not cause any variation in terms of performance,
it ensures that the output of each convolution has the same
size of its input along axis x, y, and z.

Resolution changes are therefore due uniquely to the
three max pooling layers, each halving the size of the
volumes. When using the aforementioned input size, the
encoder output is composed of 512 feature maps of size
10 × 10 × 10. Inside the decoder, on the other hand, reso-
lution changes are caused by transposed convolutions, with
dimensions 2× 2× 2 for both the kernel and stride to dou-
ble the size of the feature maps. This adjustment ensures
resolution symmetry between features in the decoder and
corresponding maps in the encoder, thus allowing them to
be simply concatenated with skip connections. Moreover,
the output of the model naturally has the same dimensions
of the input. The final output is a single channel volume, to
which we apply a Sigmoid activation function and a thresh-
old at 0.5 to obtain the final binary prediction mask.

The segmentation architecture is further enriched with a
positional embedding. Since our sub-volumes are extracted
from the original scan following a fixed grid, we exploit
positional information derived from the location of the top-
left and bottom-right corners of the sub-volume. Specifi-
cally, these global coordinates are fed to a linear layer which
yields a single feature map of dimensions 10×10×10. This
positional embedding gets concatenated to the output of the
encoder, and then fed to the decoder. Exploiting positional
information ensures two extremely important benefits:

• During training, the CNN is fed with implicit informa-
tion about areas close to the edges of the scan, where
the IAN is very unlikely to be present. This piece of
knowledge greatly reduces the number of false posi-
tives during inference. As a matter of fact, no post-
processing method is required to refine the output of
the proposed CNN, contrarily to [15].
• Information about cut positions helps the network to

better shape the output: sub-volumes located close to
the mental foramen generally present a much thinner
canal than those located in the mandibular foramen.
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Figure 8. Architecture of the proposed Positional PadUNet. The 3D CNN has a classic encoder-decoder structure, and the output is a
single-channel prediction mask. The input is a 3D sub-volume obtained from a CBCT scan, enriched with information about its global
location. As an approach for the label propagation task, sparse annotations are concatenated with the input volume. Best viewed in color.

This technique could indeed be employed for several
classes of medical data, as anatomical structures can
substantially vary according to their location.

We name the proposed architecture Positional PadUNet. A
detailed description is provided in Tab. 1.

4.2.1 Deep Expansion

The presence of a new 3D voxel-level annotated dataset
paves the way to a new frontier for label propagation: we
can indeed employ 3D annotations to supervise a deep la-
bel propagation neural network, trained to expand sparse
labels into dense ones, and produce high quality synthetic
ground truths for the segmentation task. We christen this
new label propagation approach Deep Label Expansion, or
Deep Expansion in short. The deep expansion model is
based on the proposed segmentation network, Positional
PadUNet. The main difference regards the input layer, that
is changed in order to accept a concatenation of both the
raw volume data and the sparse annotations, rendered as
a binary channel. Thus, the network input has a shape of
2 × 80 × 80 × 80. Same as Positional PadUNet, a posi-
tional embedding is concatenated to the encoder output. By
means of this model, we generate a synthetic dataset which
will be employed to pre-train our final segmentation CNN.
Once again, the positional embedding supplies important
information about the location of the cut, which is closely
related to the diameter of the expanded labeled canal.

5. Experimental Results

This Section firstly describe the improvements we intro-
duced in the competitor pipeline (Sec. 5.1), we will then

Layer Input
Channels

Output
Channels

Skip
Connections

3D Conv Block 0 1 or 2 32 7

3D Conv Block 1 32 64 3

3D Conv Block 2 64 64 7

3D Conv Block 3 64 128 3

3D Conv Block 4 128 128 7

3D Conv Block 5 128 256 3

3D Conv Block 6 256 256 7

3D Conv Block 7 256 512 7

Transpose Conv 513 512 7

3D Conv Block 8 512 + 256 256 3

3D Conv Block 9 256 256 7

Transpose Conv 256 256 7

3D Conv Block 10 256 + 128 128 3

3D Conv Block 11 128 128 7

Transpose Conv 128 128 7

3D Conv Block 12 128 + 64 64 3

3D Conv Block 13 64 64 7

3D Conv Block 14 64 1 7

Table 1. Overview of our backbone for both the proposed deep
label expansion network (two input channels) and segmentation
network (one input channel). Every layer from the encoder that
produces skip connections is followed by a 3D max pooling layer
with kernel size 2. All the 3D Conv Blocks are made out of a
3D convolutional layer with kernel size 3, stride 1 and padding 1,
followed by a 3D Batch Normalization layer and a ReLu activa-
tion function. Every Transpose Convolution has kernel size and
padding of two.

evaluate the benefit provided by the proposed densely an-
notated 3D dataset, observing a ground-breaking improve-
ment in the network accuracy (Sec. 5.2). The benefit of the
proposed deep expansion model are finally highlighted in



# Test Model Pre-Training Set Training Set Sampling Batch Size Vol Shape IoU Dice

1 Jaskari et al. - Cir.Exp. Grid 24 323 0.39 0.56
2 Jaskari et al. - Cir.Exp. Weighted Grid 6 803 0.44 0.61
3 PadUNet* - Cir.Exp. Weighted Grid 6 803 0.48 0.64
4 Pos.PadUNet* - Cir.Exp. Weighted Grid 6 803 0.48 0.65
5 PadUNet* - 3D Ann. Weighted Grid 6 803 0.58 0.73
6 Pos.PadUNet* - 3D Ann. Weighted Grid 6 803 0.61 0.75
7 Pos.PadUNet* Cir.Exp. 3D Ann. Weighted Grid 6 803 0.63 0.77
8 Pos.PadUNet* Deep Expansion* 3D Ann. Weighted Grid 6 803 0.65 0.79

Table 2. Experimental results using different datasets and methods. Novel models and techniques are marked with a star.

Dataset
Name Split Sparse Dense n. Volumes

Primary
Training 3 3 68

Validation 3 3 8
Testing 3 3 15

Secondary Pre-Training 3 7 256

Table 3. Summary of the datasets employed for the experiments
reported in Sec. 5.

Sec. 5.3, clearly demonstrating the effectiveness of our po-
sitional embedding.

Before getting to the heart of the discussion, it is im-
portant to underline that during inference —contrary to the
training phase— volumes are not center cropped, i.e. each
part of the volume is fed to the model. Moreover, both the
deep expansion and the segmentation network are tested on
the same data split, thus ensuring a proper and fair compar-
ison. Indeed, employing a single split for both tasks ensures
that the synthetic training set does not implicitly contain im-
portant features that characterize samples from the test set.

During training, the following 3D augmentations are em-
ployed: (i) random affine transformations with scaling be-
tween 0.5 and 1.5, and rotation between −10 and 10 de-
grees with probability 0.5; (ii) random flip on the x axis
with probability 0.7 (canal branches tend to be symmetric).

Although both Intersection over Union and
Sørensen–Dice similarity [29] (Dice score) are pre-
sented, their values are very strictly correlated, and thus
only the latter is discussed in the following.

5.1. Improving Existing Method

In order to fairly compare with [15], the first experiment
trains our implementation of their pipeline with our primary
dataset (Tab. 3). Although the number of volumes is slightly
lower, the final results (line #1 of Tab. 2) is practically the
same (0.57 vs 0.56 of Dice score) after applying their post-
processing technique thus ensuring the correctness of our
understanding and implementation.

To reproduce their results it is mandatory to apply the
post-processing method, to cope with the large number of

false-positive voxels predicted by the network (Fig. 6b). As
the authors suggest in the paper, this output noise is likely
related to the sampling approach: discarding sub-volumes
with no ground truth voxels causes the network to always
expect input patches to contain part of the foreground.

By introducing a weighted grid sampling process we are
able to eliminate any artifact produced by the network, re-
moving the need of any post-processing. In weighted grid
sampling, 3D patches are generated online. Each patch
inside the batch is weighted as the number of foreground
voxels it contains over the maximum number of foreground
voxels in any patch of the current batch. Weight values are
then provided to the loss function to balance the relevance
of each patch volume according to its number of ground
truth voxels.

Differently from the original proposal, only batches en-
tirely composed of background sub-volumes are discarded,
meaning we allow the network to see “empty” patches. This
sampling method ensures the network is fed with almost
any part of the original input data, while the weighting
system mitigates the risk of predicting all-background vol-
umes. Additionally, we improve predictions of the model
by enlarging patch volumes at the cost of reducing the batch
size from 24 to 6. These changes give the network a more
global view of the spatial features and significantly increase
the quality of the final results reported in line #2 of Tab. 2.

Thanks to these changes, the model achieves an im-
provement of five Dice points without requiring any post-
processing to clean up the raw network output, preserving
the end-to-end training.

5.2. Improving the Model and the Data

Introducing the model described in Sec. 4.2 in addition
to the adjustments described above, it is possible to further
achieve some improvements. PosPadUNet provides more
channels, uses max pooling instead of strided convolutions,
removes the element-wise summations, and includes a po-
sitional encoding of the 3D patch, for a 0.04 Dice score in-
crement (line #4 of Tab. 2).

By training PosPadUNet on our dense voxel-level anno-
tations dataset, we achieve an impressive 0.75 Dice score,



19 points higher than the current SOTA. The same model
trained on densely annotated data gives 10 points of im-
provement in the Dice metric with respect to using a syn-
thetically expanded dataset (line #6 vs #4 of Tab. 2). This
result proves how the new dataset is indeed suitable and ef-
fective for deep learning purposes and highlights the strong
limitation of a naive label propagation method.

The impact of the proposed positional encoding is eval-
uated by looking at lines #3 and #5. Here, we remove
any kind of location information from the input of the net-
work, thus slightly simplifying the architecture depicted in
Fig. 8. The performance of this downgraded version of the
proposed segmentation network, titled PadUNet in contrast
to the whole proposed architecture, shows how enriching
the network input with knowledge about the original posi-
tion of the cut is more effective on a dense annotation setup
w.r.t. the network trained using circle expansions as ground
truth. To our understanding, this is related to the ability of
voxel-level labels to correctly represent the correlation be-
tween the inferior alveolar canal diameter and its location
within the mandible, whereas circle expansions ignore the
tendency of the canal to thicken when getting closer to the
mental foramen.

5.3. Deep Label Expansion

The deep label expansion model described in Sec. 4 is
employed to generate 256 3D synthetic voxel-level anno-
tations for the volumes with sparse annotations only, i.e.
the secondary dataset. The quality of these synthetic la-
bels composing the so-called deep expansion dataset is as-
sessed in Tab. 4, by means of the same two metrics adopted
in the rest of this Section. The first two rows compare our
label propagation method with the circle expansion algo-
rithm proposed by Jaskari et al. (Sec. 4.1), making use of
the proposed test set annotated at a voxel level. Experimen-
tal results clearly demonstrate an accuracy improvement.

The last row of Tab. 4, on the other hand, depicts the per-
formance of Positional PadUNet when trained for the IAN
segmentation task, without making use of the 2D sparse
manual annotations. This last row has the purpose of prov-
ing how making use of coarse annotations actually improves
the quality of the final output. It is very important to high-
light that the first row of Tab. 4 evaluates the accuracy of la-
bels obtained through circular expansion, whereas the first
four rows of Tab. 2 assess the performance of CNNs trained
with such automatically generated annotations.

The deep expansion dataset can be used for pre-training
our segmentation network, which is subsequently fine-tuned
on the 3D manually annotated dataset (line #8 of Tab. 2). As
already reported, without any fine-tuning set-up, the model
achieves a 0.75 Dice score on the segmentation of the IAN.
The deep expansion dataset allows to obtain a 0.04 improve-
ment in terms of Dice score. As a comparison, performing

Model Data Use Sparse IoU Dice

Circle Expansion - 3 0.38 0.55
Deep Expansion 3D 3 0.64 0.78
Deep Expansion 3D 7 0.61 0.75

Table 4. Experimental results when training our deep label prop-
agation network compared to the baseline results on our densely
annotated testset.

# Test IoU (± std) Dice (± std)

6 0.60 (±0.014) 0.75 (±0.013)
7 0.62 (±0.021) 0.76 (±0.017)
8 0.64 (±0.017) 0.78 (±0.023)

Table 5. Experimental results employing different dataset splits.

a pre-training on the circle expansion dataset only increases
the Dice score by 0.02.

Hence, combining all of the novelties, both the new 3D
training dataset and the novel deep expansion network, we
are able to reach a final Dice score of 0.79; a 41% improve-
ment w.r.t. our competitor. This is by far the highest score
ever obtained in the task and the new state of the art for the
inferior alveolar canal segmentation.

5.4. Improving the Evaluation Protocol

In order to establish a solid benchmark for the segmenta-
tion of the IAN, we replicate experiments #6, #7, and #8 of
Tab. 2 by using six (91//15 = 6) different random dataset
splits and ensuring that test sets are disjoint. This allows
us to calculate the mean and the standard deviation of both
IoU and Dice metrics (Tab. 5), confirming that the obtained
results are independent from the split.

6. Conclusions
With this paper we tackled the 3D segmentation of the

Inferior Alveolar Nerve. We focused on the importance of
voxel-level annotations for the task, gathering a new dataset
with finely-grained labels and proposing a novel label prop-
agation method that allows 3D dense annotations to be gen-
erated from 2D outlines. Experimental results confirmed
both the great relevance of dense high quality 3D labels,
and the utility of enhancing 2D annotations with the pro-
posed approach. Moreover, the novel segmentation CNN
presented in this work pushes the state of the art in IAN
segmentation to a 0.79 Dice score. To the best of our knowl-
edge, this is the first public maxillofacial dataset with voxel-
level annotations of the Inferior Alveolar Nerve. Our work
aims to encourage the scientific community to further im-
prove results for the IAN canal segmentation tasks, by dis-
tributing a public dataset feasible for deep learning training.
The new collected dataset and the methods described in this
paper are publicly available in [7].
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