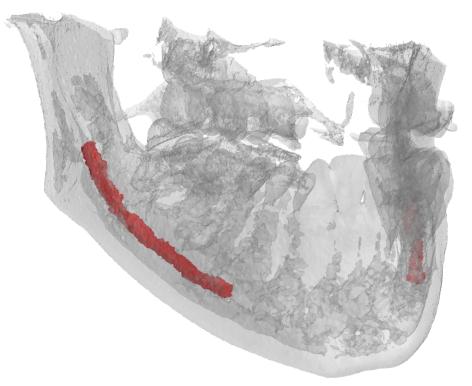


A Cone Beam Computed Tomography Annotation Tool for Automatic Detection of the Inferior Alveolar Nerve Canal

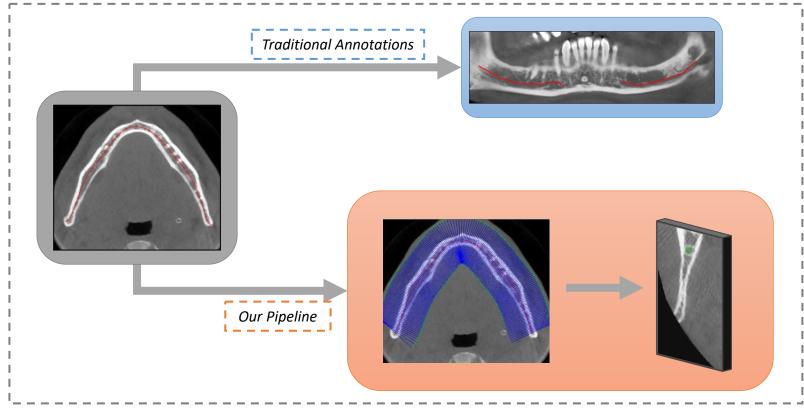
Cristian Mercadante¹, Marco Cipriano¹, Federico Bolelli¹, Federico Pollastri¹, Mattia Di Bartolomeo², Alexandre Anesi³, and Costantino Grana¹

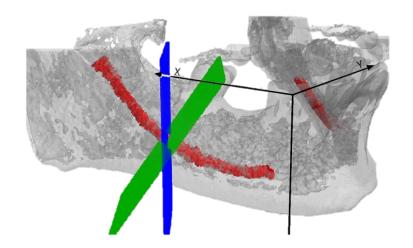

¹Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia

²Surgery, Dentistry, Maternity and Infant Department, Unit of Dentistry and Maxillo-Facial Surgery, University of Verona

³Department of Medical and Surgical Sciences for Children & Adults, Cranio-maxillo-facial Surgery, University of Modena and Reggio Emilia

Inferior Alveolar Canal

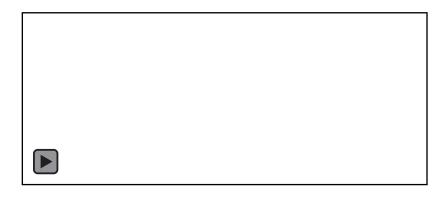

- The inferior alveolar nerve (IAN) is a branch of the mandibular nerve which supplies sensation to the lower teeth
- Its position is of great relevance for avoiding severe injuries during surgery operations
- Labeling 3D volumes is tedious and patients are sparsely annotated using 2D view
- We introduce a novel tool for a precise and fast
 3D annotation of the IAN


Annotations

- Traditionally made on 2D panoramic views extracted from a spline along the dental arch
- We exploited the spline to generate a set of 2D cross-sectional views

The Annotation Tool

- Allows to annotate the cross-sectional views and generate a 3D labeled output
- Active contours support and speed-up the annotation process
- Export is available in multiple formats (e.g. NumPy file and PNG images)
- Better views can be obtained using tilted planes

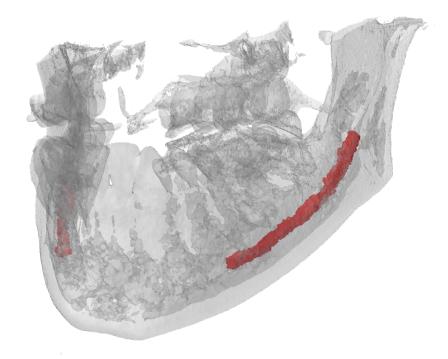


Applications

- Annotation tool evaluation is performed generating three datasets from four patients and training the classic UNet3D architecture for a segmentation task
- Results proved that our network is able to generalize despite the few data available

	2 Labels			3 Labels		
	\overline{GTD}	GSD	ASD	\overline{GTD}	GSD	ASD
P1 P2 P3 P4	0.67 0.44 0.59 0.61	0.68 0.42 0.42 0.54	$0.63 \\ 0.45 \\ 0.41 \\ 0.46$	$0.54 \\ 0.67 \\ 0.63 \\ 0.65$	$0.55 \\ 0.34 \\ 0.26 \\ 0.35$	0.51 0.29 0.26 0.26

IoU (IAN for 2 labels) and mIoU (internal IAN and contour for 3 labels) of our network trained with slices generated by guided tilted planes (GTD), guided straight planes (GSD), and unsupervised straight planes (ASD).


Qualitative result from a sequence of predictions. Original image on left, annotation from the tool in the middle, network prediction on the right.

Conclusion

- Great advantages in the annotation process:
 - 3D output, fast and user-friendly set of features

- Useful for **Deep Learning** algorithms:
 - Big datasets can be generated from few patients, allowing researchers to work with 3D neural networks in scarce data environments

